ΓΟCT 28091-89 (CT CЭB 6349-88)

Группа Е21*

* В указателе

"Государственные стандарты" 2002 год приведена группа E29. - Примечание "КОДЕКС".

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОРЕЛКИ ПРОМЫШЛЕННЫЕ НА ЖИДКОМ ТОПЛИВЕ

Методы испытаний

Industrial burners for liquid fuel. Test methods

ОКП 36 9630

Срок действия с 01.01.90 до 01.01.95*

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. ВНЕСЕН Министерством газовой промышленности СССР
- 2. Постановлением Государственного комитета СССР по стандартам от 06.04.89 N 957 стандарт Совета Экономической Взаимопомощи СТ СЭВ 6349-88 "Горелки промышленные на жидком топливе. Методы испытаний" введен в действие непосредственно в качестве государственного стандарта СССР с 01.01.90
 - 3. Срок проверки 1995 г. Периодичность проверки 5 лет

^{*} Ограничение срока действия снято по протоколу N 4-93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС N 4, 1994 г.). - Примечание "КОДЕКС".

- 4. В стандарт введен международный стандарт ИСО 5063-78
- 5. ВВЕДЕН ВПЕРВЫЕ
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта
<u>FOCT 8.051-81</u>	4
<u>ΓΟCT 8.549-86</u>	4
<u>ΓΟCT 12.1.026-80</u>	5.15
<u>ГОСТ 33-82</u>	5.16
<u>ΓΟCT 1431-85</u>	5.16
<u>ΓΟCT 1437-75</u>	5.16
<u>ΓΟCT 1461-75</u>	5.16
<u>FOCT 3900-85</u>	5.16
<u>ΓΟCT 6356-75</u>	5.16
<u>ΓΟCT 14254-80</u>	5.13
<u>ΓΟCT 21261-75</u>	5.16
<u>ΓΟCT 25670-83</u>	4
<u>ΓΟCT 27824-88</u>	5.7; 5.8

Настоящий стандарт распространяется на промышленные горелки, работающие на жидком топливе, с ручным управлением, полуавтоматические и автоматические, предназначенные для сжигания жидкого топлива в смеси с воздухом, а также на жидко-топливную часть комбинированных горелок.

Настоящий стандарт не распространяется на горелки паровых электростанций, энергетических котлов для горелки СУДОВЫХ испарительные горелки, радиационные трубы, горелки, при работе которых образуются продукты сгорания, используемые в качестве контролируемой атмосферы, горелки, предназначенные для теплового оборудования для быта и предприятий общественного питания, горелки для специфических случаев применения, изготавливаемые в единичных экземплярах.

1. ОБОЗНАЧЕНИЯ

Наименования и обозначения величин и единицы их измерения, используемые в настоящем стандарте, приведены в табл.1.

Таблица 1

Наименование величины	Единица измерения	Обозначение	Раздел или пункт стандарта
1. Основные размеры горелки	ММ	l_1, l_2, \ldots, l_n	4; 5.2; 5.17
		d_1, d_2, \ldots, d_n	
		r_1, r_2, \ldots, r_n	
2. Масса горелки	кг	M	4; 5.3
3. Внутренний диаметр или внутренние размеры сторон камеры горения испытательного стенда	ММ	D_{K} , a_{K} , b_{K}	3.1; 4; 5.5; 5.9
4. Внутренняя длина камеры горения испытательного стенда	мм	$L_{ m K}$	4; 5.5; 5.9
5. Плотность топлива	кг/м ³	$ ho_{\mathtt{T}}$	2.3; 5.16
6. Плотность воздуха	кг/м ³	$ ho_{\mathtt{B}}$	6.1
7. Содержание углерода в топливе по массе	%	C _T	4; 5.16; 6.9
8. Содержание водорода в топливе по массе	%	$H_{\mathtt{T}}$	4; 5.16; 6.6

1	ll I	l I	1
9. Содержание серы в топливе по массе	%	S _T	5.16; 6.6; 6.7; 6.8; 6.12
10. Содержание кислорода в топливе по массе	%	$\circ_{\mathtt{T}}$	4; 5.16; 6.6
11. Содержание золы в топливе по массе	%	$A_{\mathtt{T}}$	5.16; 6.10
12. Редуцированное содержание углерода в топливе по массе	%	С ^{ред}	6.6; 6.7; 6.8; 6.9; 6.11
13. Содержание углерода в твердых остатках сгорания топлива по массе в пересчете на расход топлива	%	C _z	6.9; 6.10; 6.15
14. Содержание углерода по массе в твердых остатках сгорания топлива	%	C_i	5.10; 6.10
15. Масса твердых остатков сгорания топлива	кг/с	G_{zi}	6.10
16. Кинематическая вязкость топлива	мм ² /с	$v_{\mathtt{T}}$	2.3; 5.16
17. Удельная низшая теплота сгорания топлива	Дж/кг	$\mathcal{Q}_{\mathtt{H}}$	5.16; 6.2; 6.14; 6.15
18. Расход топлива	кг/с	$G_{\mathtt{T}}$	4; 6.2; 6.4; 6.10

19. Атмосферное давление	Па	p_a	4; 6.5
20. Давление в камере горения	Па	$p_{\text{K.r}}$	2.2; 4; 5.7; 5.8; 5.9
21. Присоединительное давление топлива	Па	$p_{\mathtt{T}}^{\mathtt{I}}$	4; 5.6
22. Давление топлива перед форсункой горелки	Па	$p_{\mathtt{T}}^{\mathrm{II}}$	4
23. Присоединительное давление распыливающего вещества	Па	$p_{\mathrm{p.b.}}^{\mathrm{I}}$	4
24. Давление распыливающего вещества перед форсункой горелки	Па	$p_{\mathrm{p.s.}}^{\mathrm{II}}$	4
25. Присоединительное давление воздуха для горения	Па	$p_{\scriptscriptstyle B}^{\rm I}$	4
26. Давление воздуха для горения перед смесителем горелки	Па	$p_{\scriptscriptstyle m B}^{ m II}$	4
27. Давление насыщенного водяного пара в воздухе	Па	Р вп.н	4; 6.5
28. Температура топлива перед форсункой горелки	°C	$t_{\mathtt{T}}$	4

29. Температура распыливающего вещества перед форсункой горелки	°C	$t_{ m p.B}$	4
30. Температура воздуха для горения перед горелкой	°C	$t_{ exttt{B.}\Gamma}$	2.5; 4
31. Температура окружающей среды	°C	t_{o}	4
32. Температура наружных поверхностей горелки	°C	$t_{ m H.II}$	4; 5.10
33. Температура продуктов сгорания на выходе из камеры горения	°C	t _{mpcr}	2.5; 4
34. Температура вспышки топлива	°C	$t_{ exttt{T.B}}$	5.16
35. Температура охлаждающей воды на входе в испытательный стенд	°C	$t_{ m oxn.в_1}$	2.5; 4
36. Температура охлаждающей воды на выходе из испытательного стенда	°C	<i>t</i> _{охп.в₂}	2.5; 4
37. Стехиометрический объем воздуха для горения	м ³ /кг	$V_{\rm o}$	6.6; 6.7; 6.13
38. Фактический объем сухого воздуха для горения	м ³ /кг	$V_{\scriptscriptstyle m B.C}$	6.5; 6.13

39. Фактический объем влажного воздуха для горения	м ³ /кг	$V_{\scriptscriptstyle \mathrm{B.B}}$	6.4; 6.5
40. Расход влажного воздуха для горения	м ³ /с	$V_{\mathtt{B}.\mathtt{B}}'$	4; 6.4
41. Расход распыливающего вещества	м ³ /с	V″ _{рв}	4
42. Стехиометрический объем сухих продуктов сгорания	м ³ /кг	(V _{c.r}) α=1,0	6.7
43. Фактический объем сухих продуктов сгорания	м ³ /с	$V_{\mathrm{c.r}}$	6.8; 6.14
44. Коэффициент избытка воздуха	-	α	5.10; 6.13
45. Тепловая мощность горелки	Вт	$P_{\mathtt{T}}$	2.5; 5.5; 5.7; 5.8; 5.9; 5.10; 6.2; 6.3
46. Коэффициент рабочего регулирования горелки		$K_{ m p.p}$	5.8; 5.9; 6.3
47. Потери тепла от химической неполноты сгорания	%	q_3	5.10, 6.14
48. Потери тепла от механической неполноты сгорания	%	94	5.10, 6.15
'	п 1	'	1

49. Относительная влажность воздуха для горения	%	φ	4, 6.5
50. Объемная концентрация оксида углерода в сухих продуктах сгорания	%	ωco	4, 5.10, 6.8, 6.13, 6.14, 6.16, 6.17
51. Объемная концентрация диоксида углерода в сухих продуктах сгорания		ω _{CO₂}	2.5, 4, 6.8, 6.13, 6.16
52. Объемная концентрация диоксида серы в сухих продуктах сгорания	%	ω _{SO₂}	4, 6.8, 6.13, 6.16
53. Объемная концентрация кислорода в сухих продуктах сгорания	%	ω _{O2}	4, 6.13, 6.16
54. Объемная концентрация водорода в сухих продуктах сгорания		$\omega_{ m H_2}$	4, 6.14
55. Объемная концентрация метана в сухих продуктах сгорания	%	^ω CH ₄	4, 6.14
56. Объемная концентрация оксида углерода в сухих продуктах сгорания при α =1,0	%	(ω _{CO}) _{α=1,0}	4; 6.16
57. Максимальная объемная концентрация диоксида углерода в сухих продуктах сгорания	%	ω max CO ₂	4; 6.11, 6.13, 6.16

58. Максимальная объемная концентрация диоксида серы в сухих продуктах сгорания	%	ω max SO 2	4; 6.12, 6.13, 6.16
59. Концентрация оксидов азота в сухих продуктах	мг/м ³	$(M_{\mathrm{NO}_X})_{\alpha=1,0}$	4, 5.10, 6.17
сгорания в пересчете на NO_2 при α =1,0			
60. Концентрация 3,4 бенз[а] пирена в сухих продуктах сгорания при α =1,0	мг/м ³	$(M_{\rm C_{20}H_{12}})_{\alpha=1,0}$	4, 5.10, 6.17
61. Время защитного отключения подачи топлива при розжиге горелки	С	$ au_{3.\mathrm{p}}$	4, 5.7, 5.11
62. Время защитного отключения подачи топлива при погасании пламени	С	τ _{3.Π}	4, 5.7, 5.11
63. Время защитного отключения подачи топлива при изменении давления топлива или воздуха для горения, превышающем регламентированные пределы	С	⁷ з.д	4, 5.11
64. Время продувки	С	$ au_{\pi}$	4, 5.7, 5.11
65. Время пуска горелки	С	$ au_{\pi.\mathbf{r}}$	4, 5.7, 5.11
66. Уровень звука	дБА	L_A	5.15

67. Уровень звукового давления в октавных полосах частот		L	5.15
68. Потребляемая электрическая мощность горелки	Вт	P_3	5.12

2. ОБЩИЕ ПОЛОЖЕНИЯ

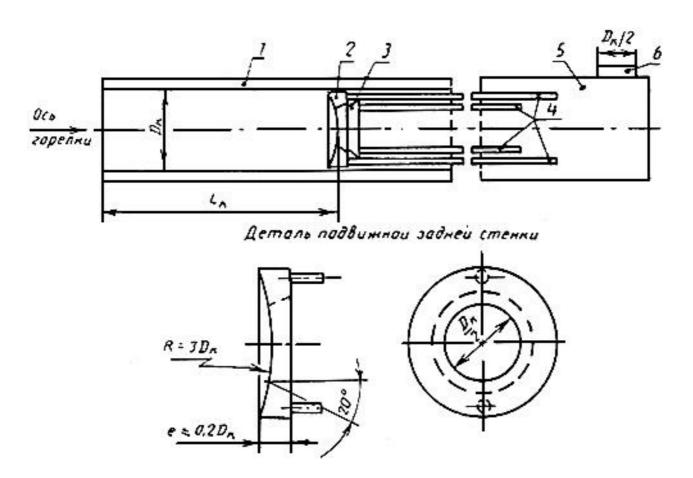
- 2.1. Образец горелки следует представлять на испытания вместе с документацией. Число образцов и объем документации определяются видом испытаний.
- 2.2. Условия проведения испытаний горелок, влияющие на их эксплуатационные характеристики (тепловое напряжение объема камеры горения, давление в камере горения и т.д.) должны быть максимально приближены к эксплуатационным.
- 2.3. Горелку следует испытывать на всех видах жидких топлив, для которых она предназначена.
 - 2.4. Испытания горелок следует проводить на испытательных стендах.

В случаях невозможности имитации всех условий эксплуатации на стенде испытания следует проводить на тепловом агрегате, для которого горелка предназначена.

2.5. Эксплуатационные характеристики горелки следует проверять при стационарном режиме, когда в течение 15 мин не происходит изменения больше чем на 2% - тепловой мощности горелки, 5 °C - температуры продуктов сгорания, 0,2% (абсолютных) - объемной концентрации диоксида углерода в сухих продуктах сгорания.

Температура воздуха для горения должна быть в пределах, регламентированных для данной горелки.

Температура охлаждающей воды на выходе из испытательных стендов с металлическими водоохлаждаемыми камерами горения должна быть от 50 до 90 °C.

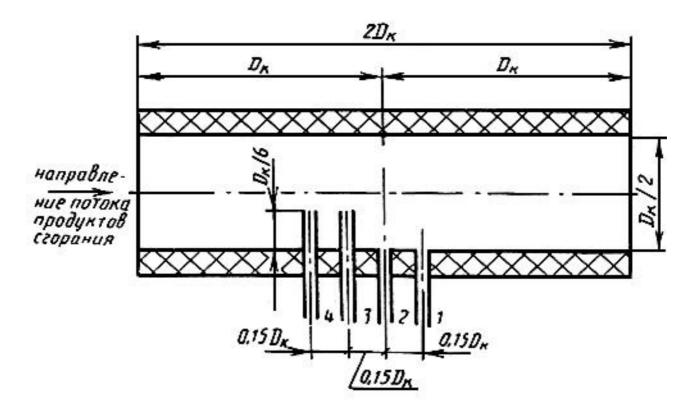

Для стационарного режима неохлаждаемых футерованных камер горения или тепловых агрегатов скорость изменения температуры продуктов сгорания не должна превышать 10 °C за 30 мин.

3. ТРЕБОВАНИЯ К ИСПЫТАТЕЛЬНЫМ СТЕНДАМ

3.1. Для испытаний горелок должны применяться испытательные стенды с металлическими водоохлаждаемыми цилиндрическими камерами горения с подвижной задней стенкой (черт.1), оснащенные участком для измерения параметров продуктов сгорания (черт.2).

Черт.1

Металлическая водоохлаждаемая цилиндрическая камера горения испытательного стенда



- 1 водоохлаждаемая часть камеры горения; 2 кольцо подвижной охлаждаемой задней стенки, определяющее
- соответствующую длину камеры горения; 3 регулирующий конус подвижной охлаждаемой задней стенки,
- предназначенный для настройки регламентированного рабочего давления в камере горения;
- 4 трубки для подвода и отвода охлаждающей воды; 5 охлаждающая часть;
- 6 участок для измерения параметров продуктов сгорания (см. черт.2).

Черт.1

Черт.2

Участок для измерения параметров продуктов сгорания

- 1 зонд для измерения давления; 2 штуцер для ввода зонда для измерения температуры;
- 3 зонд для отбора проб продуктов сгорания для анализа;
- 4 зонд для отбора проб для определения сажевого числа

Внутренние диаметры камер горения должны выбираться из ряда: 280, 400, 500, 600, 800, 1000, 1500 и 1800 мм.

Горелки, предназначенные только для промышленных печей, предпочтительно испытывать на испытательных стендах с футерованными неохлаждаемыми или частично охлаждаемыми камерами горения круглого или прямоугольного сечения или прямоугольного сечения с пучковым сводом и плоским подом. Внутренние диаметры камер горения круглого сечения предпочтительно выбирать из ряда: 400, 500, 600 и 1000 мм. Внутренние размеры сторон камер горения прямоугольного сечения предпочтительно выбирать из ряда: 1000, 1500 и 2000 мм.

3.2. Конструкция камеры горения испытательного стенда должна предусматривать возможность визуального контроля за пламенем и работой горелки.

Камера горения испытательного стенда должна быть герметичной в такой степени, чтобы изменение коэффициента избытка воздуха по длине камеры горения за счет присосов не превышало допустимой погрешности.

3.3. Участок для измерения параметров продуктов сгорания должен быть выполнен в соответствии с требованиями черт.2 и оснащен штуцерами для ввода зондов, обеспечивающих измерение температуры продуктов сгорания и давления в камере горения, а также отбор проб продуктов сгорания для анализа объемных концентраций их компонентов и определения сажевого числа или концентрации сажистых частиц (см. приложение 1).

4. МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ

При испытаниях горелок должны применяться методы и средства измерений, обеспечивающие точность измерения размеров горелок, внутренних размеров камеры горения до 500 мм по <u>ГОСТ 8.051</u> и <u>ГОСТ 8.549</u> и свыше 500 мм по <u>ГОСТ 25670</u>.

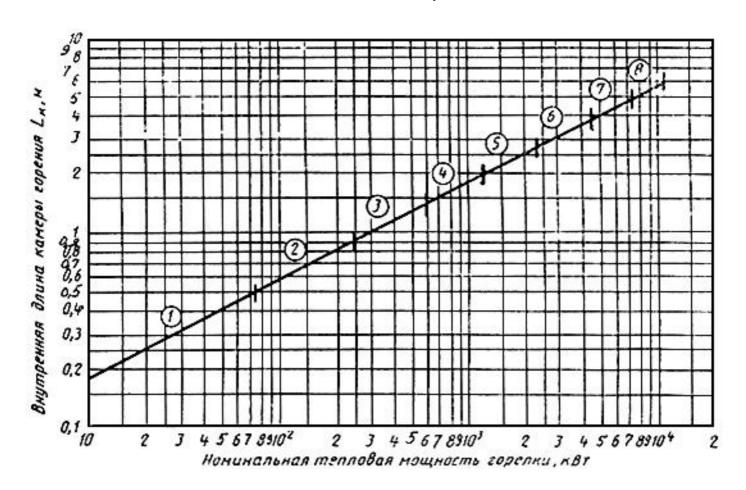
Допускаемые погрешности измерения других параметров приведены в табл.2.

Таблица 2

Измеряемая величина	Допускаемая погрешность измерения
1. Масса горелки и ее съемных деталей	±2% (отн.)
2. Расход топлива (по массе или объему)	±1% (отн.)
3. Расход воздуха для горения или распыливающего вещества (по массе или объему)	±2% (отн.)
4. Относительная влажность воздуха для горения	±1% (отн.)
5. Атмосферное давление	±100 Па (абс.)
6. Давление топлива, воздуха для горения, распыливающего вещества, насыщенного водяного пара в воздухе, давление в камере горения	
до 1 кПа	±10 Па (абс.)
св. 1 кПа	±1% (отн.)
7. Температура топлива, распыливающего вещества, воздуха для горения, окружающей среды и наружных поверхностей горелки	±1 °C (абс.)
8. Температура продуктов сгорания	±1% (отн.)

9. Температура охлаждающей воды	±1 °C (абс.)
10. Время	±1% (отн.)
11. Содержание углерода в топливе по массе	±0,3% (отн.)
12. Содержание водорода в топливе по массе	±1,5% (отн.)
13. Содержание кислорода в топливе по массе	±1,5% (отн.)
14. Объемная концентрация диоксида углерода, диоксида серы и кислорода в сухих продуктах сгорания	±0,2% (абс.)
15. Объемная концентрация оксида углерода, водорода и метана в сухих продуктах сгорания	±5% (отн.)
16. Концентрация оксидов азота и 3,4 бенз[а] пирена в сухих продуктах сгорания	±10% (отн.)
17. Внутренняя длина камеры горения	±1% (отн.)

5. ПРОВЕДЕНИЕ ИСПЫТАНИЙ


- 5.1. До начала испытания горелку подвергают визуальному осмотру, при котором проверяется комплектность горелки и выявляются внешние повреждения.
- 5.2. Основные размеры горелки, включая размеры, влияющие на эксплуатационные показатели, а также габаритные, установочные и присоединительные размеры проверяют на соответствие чертежам.
 - 5.3. Массу горелки и ее съемных деталей проверяют взвешиванием.

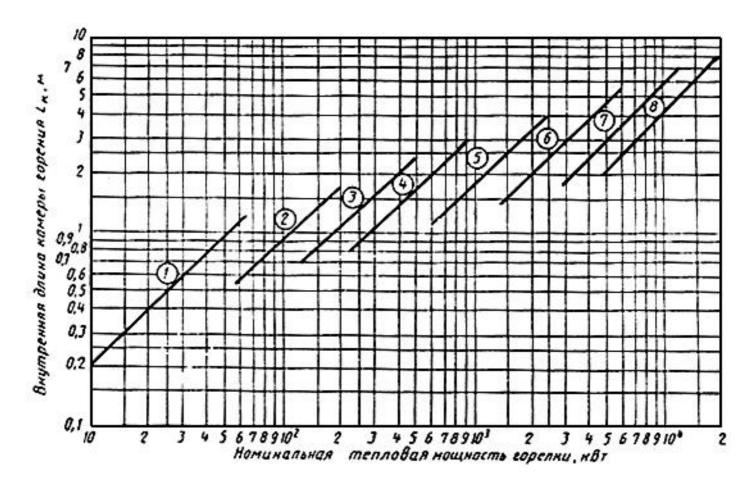
- 5.4. Проверяют перемещение подвижных частей горелки, при котором выявляются пределы перемещений, а также неисправности, задерживающие перемещение.
- 5.5. Соответствующий тип камеры горения или теплового агрегата выбирают с учетом области применения горелки, номинальной тепловой мощности, формы пламени, а также с учетом теплового напряжения объема камеры горения.

Внутренние диаметры и длины цилиндрических камер горения испытательных стендов в зависимости от номинальных тепловых мощностей горелок определяют по кривым, приведенным на черт.3-5, с учетом реальных (близких к условиям эксплуатации) степени стеснения и длины факела и теплового напряжения.

Черт.3

Зависимость внутренних длины и диаметра камеры горения испытательного стенда от номинальной тепловой мощности горелки

1 - участок кривой, относящийся к камере с внутренним диаметром $D_{\mathbf{K}}$ =280 мм;

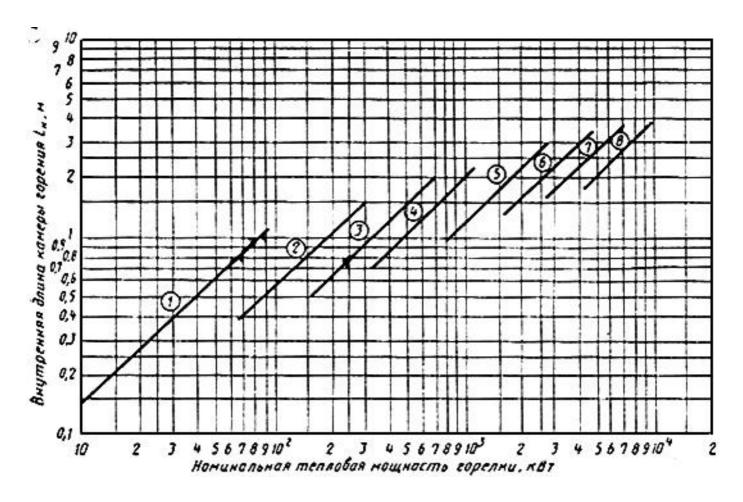

2 -
$$D_{\rm K}$$
 =400 мм; 3 - $D_{\rm K}$ =500 мм; 4 - $D_{\rm K}$ =600 мм; 5 - $D_{\rm K}$ =800 мм; 6 - $D_{\rm K}$ =1000 мм; 7 - $D_{\rm K}$ =1500 мм;

8 -
$$D_{\rm K}$$
 =1800 мм

Черт.3

Черт.4

Зависимость внутренних длины и диаметра камеры горения испытательного стенда от номинальной тепловой мощности горелки


1 - участок кривой, относящийся к камере горения с внутренним диаметром $D_{\rm K}$ =280 мм; 2 - $D_{\rm K}$ =400 мм;

3 -
$$D_{\rm K}$$
 =500 мм; 4 - $D_{\rm K}$ =600 мм; 5 - $D_{\rm K}$ =800 мм; 6 - $D_{\rm K}$ =1000 мм; 7 - $D_{\rm K}$ =1500 мм; 8 - $D_{\rm K}$ =1800 мм

Черт.4

Черт.5

Зависимость внутренних длины и диаметра камеры горения испытательного стенда от номинальной тепловой мощности горелки

1 - участок кривой, относящийся к камере с внутренним диаметром $D_{\rm K}$ =280 мм;

2 - $D_{\rm K}$ =400 мм; 3 - $D_{\rm K}$ =500 мм; 4 - $D_{\rm K}$ =600 мм; 5 - $D_{\rm K}$ =800 мм; 6 - $D_{\rm K}$ =1000 мм; 7 - $D_{\rm K}$ =1500 мм;

8 - $D_{\rm K}$ =1800 мм

Черт.5

- 5.6. Герметичность системы топливораспределения, включая гибкие подводы, проверяют рабочим жидким топливом или имитирующей его испытательной жидкостью при избыточном давлении, в 1,2 раза превышающем максимальное рабочее избыточное давление топлива, в течение 1 ч. Для этого в отверстиях для выхода топлива устанавливают заглушки, и тракт топливораспределения отключают от источника давления. В течение испытания снижение давления рабочего жидкого топлива или имитирующей испытательной жидкости не допускается.
- 5.7. Надежность пуска и устойчивой эксплуатации горелки проверяют при давлениях в камере горения, регламентированных <u>ГОСТ 27824</u>, путем включения и выключения горелки не менее 10 раз подряд. Периоды работы или отключения горелки должны длиться 2 мин.

Одновременно следует проверять:

время пуска горелки; время продувки; соблюдение регламентированной последовательности отдельных операций автоматики согласно программе;

процесс пуска, обращая внимание на появление хлопка и пульсации пламени;

образование осадков на запальном устройстве, распылителе, смесителе, датчике устройства контроля пламени и других частях, которое могло бы повлиять на безопасность работы горелки.

В случае, если горелка предусматривает изменение тепловой мощности и других параметров (например сменой топливного сопла или головки горелки), необходимо провести эту проверку при всех возможных вариантах.

- 5.8. Устойчивость пламени при заданных эксплуатационных условиях, а также при повышенном разрежении или избыточном давлении в камере горения по <u>ГОСТ 27824</u> проверяют во всем диапазоне мощностей или регулирования горелки во время испытаний на тепловую мощность.
- 5.9. Проверку тепловой мощности, диапазона мощностей, коэффициента рабочего регулирования и других эксплуатационных характеристик горелки проводят при всех регламентированных эксплуатационных условиях. Следует проверять номинальную тепловую мощность. Испытания при средней тепловой мощности следует проводить только в случае, если коэффициент рабочего регулирования горелки превышает значение 2,5.
- 5.9.1. Для горелки с двухступенчатым регулированием тепловой мощности проводят в зависимости от вида горелки ряд испытаний с каждой головкой горелки соответственно программе, приведенной в табл.3. При каждой настройке тепловой мощности горелки необходимо соответствующим образом изменить размеры камеры горения испытательного стенда, включая настройку положения регулирующего конуса.

Вид горелки в зависимости от эксплуатационного давления в камере горения	Давление в камере горения испытательного стенда при испытаниях горелки
Горелка для разрежения	Атмосферное
	1,1 максимального эксплуатационного разрежения
Горелка для избыточного давления	Атмосферное
	1,1 максимального эксплуатационного избыточного давления
Горелка для избыточного давления и разрежения	1,1 максимального эксплуатационного избыточного давления
	1,1 максимального эксплуатационного разрежения

5.9.2. Для горелки с трехступенчатым регулированием тепловой мощности проводят в зависимости от вида горелки ряд испытаний с каждой головкой горелки соответственно программе, приведенной в табл.4. Первыми следует провести испытания при номинальной тепловой мощности. В течение испытаний с минимальной или пониженной тепловой мощностью не допускается изменять настроенную длину камеры горения и настройку регулирующего конуса.

Программа испытаний горелок плавным регулированием	С	трехступенчатым	И	многоступенчатым	или

Вид горелки в зависимости от эксплуатационного давления в камере горения	положение для тепловой	Давление в камере горения испытательного стенда во время испытаний
Горелка для разрежения	Номинальное	Атмосферное
		1,1 максимального эксплуатационного разрежения
	Минимальное	Соответствующее настройке атмосферного давления при испытании на номинальную тепловую мощность
		Соответствующее настройке эксплуатационного разрежения при испытании на номинальную тепловую мощность
Горелка для избыточного давления	Номинальное	Атмосферное
		1,1 максимального эксплуатационного избыточного давления
	Минимальное	Соответствующее настройке атмосферного давления при испытании на номинальную тепловую мощность

Горелка для избыточного давления	Минимальное	Соответствующее настройке эксплуатационного избыточного давления при испытании на номинальную тепловую мощность
Горелка для избыточного давления и разрежения	Номинальное	1,1 максимального эксплуатационного избыточного давления
		1,1 максимального эксплуатационного разрежения
	Минимальное	Соответствующее настройке эксплуатационного избыточного давления при испытании на номинальную тепловую мощность
		Соответствующее настройке эксплуатационного разрежения при испытании на номинальную тепловую мощность

5.9.3. Для горелок с многоступенчатым или плавным регулированием тепловой мощности следует вначале провести испытания при номинальной тепловой мощности. Положение настроенной подвижной задней стенки камеры горения и регулирующего конуса не допускается перестраивать в течение последующих испытаний с промежуточной или минимальной тепловой мощностью горелки.

Необходимо провести испытания, соответствующие программе, приведенной в табл.4, а для горелок с непрерывным плавным регулированием также при средней арифметической тепловой мощности горелки, независимо от значения коэффициента рабочего регулирования горелки.

5.10. Во время испытаний по пп.5.9.1-5.9.3 в течение 1 ч определяют параметры, необходимые для определения тепловой мощности горелки, коэффициента избытка воздуха, полноты сгорания, концентрации вредных компонентов в продуктах сгорания, сажевого числа и т.д.

Проверяют также температуру поверхностей горелки и органов управления.

- 5.11. После проведения вышеприведенных испытаний при помощи моделирования аварийного состояния проверяют защитную работу автоматики и надежную работу всего электрооборудования горелки в диапазоне питающего напряжения от минус 15 до плюс 10% номинального значения. Эту проверку повторяют не менее 20 раз.
- 5.12. Потребляемую электрическую мощность электрооборудования и электродвигателя горелки проверяют прямым измерением.
- 5.13. Степень электрозащиты горелки и ее автоматики проверяют по <u>ГОСТ</u> 14254.
- 5.14. Уровень радиопомех проверяют по методике, согласованной между изготовителем и потребителем.
- 5.15. Уровень звука и уровень звукового давления в октавных полосах частот проверяют по <u>ГОСТ 12.1.026</u>.
- 5.16. Физические характеристики топлива и концентрации по массе его компонентов следует определять при помощи следующих методов:

удельную низшую теплоту сгорания топлива - калориметрическим методом по <u>ГОСТ 21261</u> или вычислением по элементарному анализу;

плотность топлива - по ГОСТ 3900;

кинематическую вязкость топлива - по ГОСТ 33;

температуру вспышки топлива - по <u>ГОСТ 6356</u> (в закрытом тигле по Пенски-Мартенсу);

содержание углерода, водорода и кислорода в топливе (по массе) - сжиганием (пиролизом) в тубусе или баллоне или хроматографическим методом;

содержание серы в топливе (по массе) - по <u>ГОСТ 1437</u> или <u>ГОСТ 1431</u>; содержание золы в топливе (по массе) - по <u>ГОСТ 1461</u>.

5.17. После испытаний горелки проводят повторные осмотр и измерение основных размеров, влияющих на эксплуатационные параметры горелки. Затем проверяют наличие повреждения, деформации или разъединения отдельных деталей, возможность чистки, разборки и смены быстроизнашивающихся деталей.

6. ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

- 6.1. При обработке результатов испытаний величины, приведенные в объемных единицах, относятся к нормальным условиям, которые определены абсолютным давлением 101,325 кПа и температурой 0 °C (плотность воздуха $\rho_{\rm B}$ =1,293 кг·м⁻³).
 - 6.2. Тепловую мощность горелки (P_{τ}) , Вт, вычисляют по формуле

$$P_{\mathbf{T}} = G_{\mathbf{T}} \cdot Q_{\mathbf{H}}. \tag{1}$$

6.3. Коэффициент рабочего регулирования горелки $(K_{\mathbf{p}.\mathbf{p}})$ вычисляют по формуле

$$K_{\text{p.p}} = \frac{P_{\text{THOM}}}{P_{\text{T min pa6}}},$$
(2)

где $P_{\mathtt{T}\mathtt{HOM}}$ - номинальная тепловая мощность горелки, Вт;

 $P_{\mathtt{Tmin}\,\mathtt{pa}\mathtt{d}}$ - минимальная рабочая тепловая мощность горелки, Вт.

6.4. Фактический объем влажного воздуха для горения ($V_{\mathtt{B.B}}$), м³/кг, вычисляют по формуле

$$V_{\text{B.B}} = \frac{\overset{\bullet}{V}_{\text{B.B}}}{G_{\text{T}}}.$$
(3)

6.5. Фактический объем сухого воздуха для горения $(V_{\mathtt{B.C}})$, м³/кг, вычисляют по формуле

$$V_{\text{B.C}} = V_{\text{B.B}} \left(1 - \frac{0.01 \varphi \cdot p_{\text{B.H.H}}}{p_{\text{a}}} \right).$$

6.6. Стехиометрический объем воздуха для горения $(V_{\rm o})$, м 3 /кг, вычисляют по формуле

$$V_{o} = 0.0476(1.86C_{T}^{peq} + 5.6H_{T} + 0.7S_{T} - 0.7 \cdot O_{T}).$$
 (5)

6.7. Стехиометрический объем сухих продуктов сгорания $(V_{\rm c.r})$, м 3 /кг, при α =1 вычисляют по формуле

$$|V_{c.r}|_{\alpha=1,0} = 0.01(1.85C_T^{peq} + 0.68S_T) + 0.79V_0.$$
(6)

6.8. Фактический объем сухих продуктов сгорания $(V_{c.r})$, м³/кг, вычисляют по формуле

$$V_{c.r} = \frac{1,85C_{r}^{peq} + 0,68S_{r}}{\omega_{CO_{2}} + \omega_{SO_{2}} + \omega_{CO}}.$$
(7)

6.9. Редуцированное содержание углерода в топливе $(\mathbb{C}_{\mathtt{T}}^{\mathtt{peg}})$, %, (по массе) вычисляют по формуле

$$C_{\mathbf{T}}^{\mathrm{peg}} = C_{\mathbf{T}} - C_{\mathbf{Z}}. \tag{8}$$

6.10. Содержание углерода в твердых остатках сгорания топлива (C_z) , %, вычисляют по одной из формул:

$$C_{z} = \frac{G_{zi} \cdot C_{i}}{G_{T}};$$
(9)

$$C_{z} = \frac{A_{r} \cdot C_{i}}{100 - C_{i}}.$$

$$(10)$$

6.11. Максимальную объемную концентрацию диоксида углерода в сухих продуктах сгорания $(\omega_{\text{CO}_2\text{max}})$, %, (по объему) вычисляют по формуле

$$\omega_{\text{CO}_2 \,\text{max}} = \frac{1,85 \, C_{\text{\tiny T}}^{\text{pe}\pi}}{V_{\text{\tiny O}}} \,.$$
 (11)

6.12. Максимальную объемную концентрацию диоксида серы в сухих продуктах сгорания $(\omega_{SO_2 max})$, %, (по объему) вычисляют по формуле

$$\omega_{\text{SO}_2 \text{ max}} = \frac{0.68 S_{\text{T}}}{V_{\text{o}}}.$$
(12)

6.13. Коэффициент избытка воздуха (а) вычисляют по одной из формул:

$$\alpha = \frac{V_{\text{B.C}}}{V_{\text{O}}};$$

(13)

$$\alpha = 1 + \frac{(V_{c.r})_{\alpha=1,0}}{V_o} \left(\frac{\omega_{CO_2 \max} + \omega_{SO_2 \max}}{\omega_{CO_2} + \omega_{SO_2} + \omega_{CO}} - 1 \right);$$
(14)

$$\alpha = 1 + \frac{(V_{\rm c.r})_{\alpha=1,0}}{V_{\rm o}} \cdot \frac{\omega_{\rm O_2} - 0.5\omega_{\rm CO}}{21 - (\omega_{\rm O_2} + 0.5\omega_{\rm CO})}.$$
(15)

6.14. Потери тепла от химической неполноты сгорания, (q_3) , %, вычисляют по формуле

$$q_3 = (12.6\omega_{\text{CO}} + 10.8\omega_{\text{H}_2} + 35.9\omega_{\text{CH}_4}) \cdot \frac{10^6 \cdot V_{\text{c.r}}}{Q_{\text{H}}}.$$
 (16)

6.15. Потери тепла от механической неполноты сгорания (q_4) , %, вычисляют по формуле

$$q_4 = \frac{32,7 \cdot 10^6 \,\mathrm{C_z}}{Q_{\mathrm{H}}} \,. \tag{17}$$

6.16. Объемную концентрацию оксида углерода в сухих продуктах сгорания в пересчете на состояние при α =1 $\omega_{\rm CO}$ (α =1,0), %, (по объему) вычисляют по одной из формул:

$$\omega_{\text{CO}(\alpha=1,0)} = \omega_{\text{CO}} \cdot \frac{\omega_{\text{CO}_2 \max} + \omega_{\text{SO}_2 \max}}{\omega_{\text{CO}_2} + \omega_{\text{SO}_2}},$$
(18)
$$\omega_{\text{CO}(\alpha=1,0)} = \omega_{\text{CO}} \cdot \frac{21}{21 - \omega_{\text{O}_2}}.$$
(19)

- 6.17. Концентрацию оксидов азота и 3,4 бенз[а] пирена в сухих продуктах сгорания в пересчете на состояние при α =1,0, рассчитывают по формулам (18) и (19), причем вместо $\omega_{\rm CO}$ следует подставить в формулу соответствующую концентрацию $M_{{\rm NO}_X}$ или $M_{{\rm C}_{20}{\rm H}_{12}}$.
- 6.18. На основе полученных результатов испытаний составляют протокол испытаний.

Результаты испытаний следует привести в виде графиков, изображающих границы правильной работы горелки. Пример графического изображения зависимости тепловой мощности горелки от давления в камере горения испытательного стенда приведен в приложении 2.

7. ПРОТОКОЛ ИСПЫТАНИЙ

Протокол испытаний должен содержать следующие данные:

- 7.1. Данные изготовителя по испытываемой горелке
- 7.1.1. Наименование горелки, типовое обозначение горелки, организацию-разработчик, завод-изготовитель.
 - 7.1.2. Область применения
 - 7.1.3. Описание горелки, автоматики и запального устройства.
- 7.1.4. Схему (чертеж) горелки и горелочного камня, автоматики, описание принципа действия горелки, запального устройства.
- 7.1.5. Габаритные, присоединительные и основные размеры, размеры выходного отверстия горелочного камня, топливных сопел и т.д., меняющиеся в зависимости от тепловой мощности горелки и вида топлива.
 - 7.1.6. Наименование огнеупорного материала для горелочного камня.
- 7.1.7. Основные параметры горелки (номинальную тепловую мощность, коэффициент рабочего регулирования и т.д.).
 - 7.2. Данные об испытательном стенде и условиях испытаний
- 7.2.1. Внутренний диаметр и длину металлической водоохлаждаемой камеры горения.
- 7.2.2. Внутренние размеры футерованной неохлаждаемой или частично охлаждаемой камеры горения, материал футеровки.
 - 7.2.3. Описание теплового агрегата в случае проведения на нем испытаний.
- 7.2.4. Способ подсоединения горелки к камере горения испытательного стенда или к тепловому агрегату, расстояние от выходного отверстия горелки до места отбора проб продуктов сгорания.
- 7.2.5. Давление в камере горения, тепловое напряжение объема камеры горения.
- 7.2.6. Свойства топлива, использованного при испытаниях (наименование, удельную низшую теплоту сгорания, плотность, кинематическую вязкость, состав, температуру, температуру вспышки, давление).
- 7.2.7. Атмосферное давление, давление и температуру воздуха для горения, температуру окружающей среды, относительную влажность воздуха окружающей среды.

- 7.3. Технические параметры горелки, автоматики, запального устройства и электрооборудования горелки, определенные при испытаниях
 - 7.3.1. Номинальную тепловую мощность горелки.
 - 7.3.2. Диапазон мощностей горелки.
 - 7.3.3. Коэффициент рабочего регулирования горелки.
- 7.3.4. Избыточное давление топлива и воздуха для горения перед форсункой или горелкой.
- 7.3.5. Температуру топлива и воздуха для горения перед форсункой или горелкой.
- 7.3.6. Коэффициент избытка воздуха и его изменение в диапазоне рабочего регулирования горелки.
 - 7.3.7. Расходные и регулировочные характеристики.
- 7.3.8. Объемную концентрацию оксида углерода, диоксида серы и концентрацию оксидов азота и 3,4 бенз[а] пирена в сухих неразбавленных продуктах сгорания, сажевое число.
 - 7.3.9. Потери тепла от химической и механической неполноты сгорания.
 - 7.3.10. Уровень звука и звукового давления в октавных полосах частот.
 - 7.3.11. Потребляемую электрическую мощность горелки.
 - 7.3.12. Массу горелки и съемных деталей.
- 7.3.13. Средний ресурс горелки до капитального ремонта (при наличии эксплуатационных данных).
 - 7.3.14. Время пуска горелки и продувки.
 - 7.3.15. Время защитного отключения подачи топлива при розжиге горелки.
- 7.3.16. Время защитного отключения подачи топлива при погасании пламени.
- 7.3.17. Время защитного отключения подачи топлива при изменении давления топлива или воздуха для горения, превышающем регламентированные пределы.

- 7.3.18. Диапазон температуры окружающей среды, при котором обеспечивается надежная работа автоматики (по паспорту комплектующих изделий).
- 7.3.19. Отклонение питающего напряжения от номинального, при котором обеспечивается надежная работа автоматики.
 - 7.3.20. Степень электрозащиты горелки и ее автоматики.
 - 7.3.21. Уровень радиопомех.

ПРИЛОЖЕНИЕ 1 (справочное). ОПРЕДЕЛЕНИЕ САЖЕВОГО ЧИСЛА

ПРИЛОЖЕНИЕ 1 Справочное

Приборами для определения сажевого числа служат:

1) ручной насос, обеспечивающий за один ход отсасывание объема 160 см $^3\pm5\%$ через эффективно фильтрующую поверхность диаметром 6 мм (т.е. примерно 570 см $^3\pm5\%$ на 1 см 2 эффективно фильтрующей поверхности); ход поршня насоса около 200 мм.

Уплотнение устройства, удерживающего фильтровальную бумагу перед пазом, в который бумага вставляется, должно обеспечивать герметичность, предотвращающую появление конденсата при пуске насоса и его прогревании.

Расстояние от точки отбора газа до фильтрующей поверхности не должно превышать 400 мм.

Особенности газохода, вызывающие увеличение этого расстояния, должны быть указаны в отчете;

- 2) пробоотборник, который должен иметь наружный диаметр 6 мм;
- 3) фильтровальная бумага с коэффициентом отражения (85±2,5)%, определяемым фотометрически. Для определения коэффициента отражения фильтровальную бумагу помещают на белую поверхность с коэффициентом отражения не менее 75%.

Воздух пропускают через новую фильтровальную бумагу со скоростью 3 дм³/мин через 1 см² фильтрующей поверхности, что должно вызвать перепад давлений от 2 до 10 кРа (20-100 мбар);

4) серая шкала, имеющая 10 делений, градуированная от 0 до 9, с равным расстоянием между делениями по всей шкале от белого цвета до темносерого. Каждое деление шкалы представлено в виде образцов на бумажной или пластмассовой основе, имеющих коэффициент отражения (85±2,5)%, определяемый фотометрически.

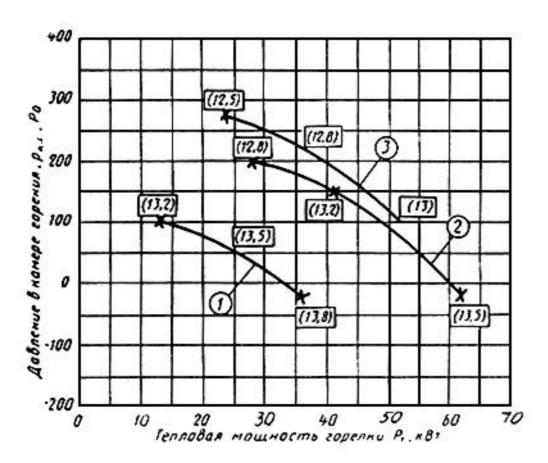
Цена деления равна одной десятой выражаемого в процентах угла отражения света, падающего на соответствующий образец.

Число 0 соответствует 0, нанесенному на бумагу, а число 6, например, изменению угла отражения падающего света на 60%.

Наибольшее допустимое отклонение каждой точки шкалы не должно превышать 3% упомянутого угла отражения.

Если шкала защищена прозрачной пластмассовой крышкой, ее устройство должно быть таким, чтобы наблюдаемая точка и деления шкалы просматривались через одну и ту же толщину защищающего вещества.

Диаметр делений стандартной шкалы дымности около 20 мм, а центральный лючок около 6 мм.


Определение сажевого числа следует проводить в такой последовательности:

- 1) отвернуть винты устройства фиксирования фильтровальной бумаги, вставить эту бумагу в паз насоса и завернуть устройство фиксирования;
- 2) ввести пробоотборник перпендикулярно направлению потока газов. Проверить герметичность уплотнения между пробоотборником и стенкой газохода в месте отбора пробы;
- 3) при применении ручного насоса для отбора проб следует сделать 10 всасываний продолжительностью от 2 до 3 с через равные промежутки времени. Окончанием всасывания считают момент, когда оператор перестает ощущать реакцию поршня;
- 4) извлечь пробоотборник из газохода, отвернуть фиксирующее устройство и удалить из него фильтровальную бумагу;
- 5) сравнить измеряемое пятно с образцом на стандартной шкале, приложив полоску фильтровальной бумаги к задней стенке шкалы. Осмотреть пятно через центральный лючок стандартных делений. Отметить на шкале число, цвет которого ближе всего к измеряемому пятну. Особенно внимательно следует оценивать промежуточные деления участка шкалы между 0 и 4.

ПРИЛОЖЕНИЕ 2 (справочное). ПРИМЕР ГРАФИЧЕСКОГО ИЗОБРАЖЕНИЯ ЗАВИСИМОСТИ ТЕПЛОВОЙ МОЩНОСТИ ГОРЕЛКИ ОТ ДАВЛЕНИЯ В КАМЕРЕ

ГОРЕНИЯ ИСПЫТАТЕЛЬНОГО СТЕНДА

ПРИЛОЖЕНИЕ 2 Справочное

Черт.6

Примечания:

- 1. Значения в скобках обозначают концентрацию в процентах (по объему) диоксида углерода в сухих продуктах сгорания.
 - 2. Кривые 1, 2 и 3 относятся к соответствующим головкам горелки.

Текст документа сверен по:

официальное издание

М.: Издательство стандартов, 1989